Package: prefeR 0.1.3

John Lepird

prefeR: R Package for Pairwise Preference Elicitation

Allows users to derive multi-objective weights from pairwise comparisons, which research shows is more repeatable, transparent, and intuitive other techniques. These weights can be rank existing alternatives or to define a multi-objective utility function for optimization.

Authors:John Lepird

prefeR_0.1.3.tar.gz
prefeR_0.1.3.zip(r-4.5)prefeR_0.1.3.zip(r-4.4)prefeR_0.1.3.zip(r-4.3)
prefeR_0.1.3.tgz(r-4.5-any)prefeR_0.1.3.tgz(r-4.4-any)prefeR_0.1.3.tgz(r-4.3-any)
prefeR_0.1.3.tar.gz(r-4.5-noble)prefeR_0.1.3.tar.gz(r-4.4-noble)
prefeR_0.1.3.tgz(r-4.4-emscripten)prefeR_0.1.3.tgz(r-4.3-emscripten)
prefeR.pdf |prefeR.html
prefeR/json (API)

# Install 'prefeR' in R:
install.packages('prefeR', repos = c('https://jlepird.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/jlepird/prefer/issues

Pkgdown site:https://jlepird.github.io

On CRAN:

Conda:

bayesian-inferencemultiobjective-optimizationpreference-elicitation

3.90 score 1 stars 16 scripts 174 downloads 9 exports 2 dependencies

Last updated 3 years agofrom:ed69536e80. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 13 2025
R-4.5-winOKMar 13 2025
R-4.5-macOKMar 13 2025
R-4.5-linuxOKMar 13 2025
R-4.4-winOKMar 13 2025
R-4.4-macOKMar 13 2025
R-4.4-linuxOKMar 13 2025
R-4.3-winOKMar 13 2025
R-4.3-macOKMar 13 2025

Exports:%<%%=%%>%ExpFlatinferNormalprefElsuggest

Dependencies:entropymcmc

Preference Elicitation on Motor Trends Dataset

Rendered frommtcars.Rmdusingknitr::rmarkdownon Mar 13 2025.

Last update: 2017-02-20
Started: 2016-06-05